Groundwater Movement and Loss through Ponds in Restored Meadows

Adam McMahon
Graduate Student
Program of Hydrologic Sciences
University of Nevada-Reno

Dr. Sherman Swanson
Associate Professor/Range and Riparian Extension State Specialist
University of Nevada-Reno

Overview

- Project Background
- Objectives
- Hypotheses
- Study Area
- Methods
- Analysis
- Application

Project Background

- Meadow Degradation
 - Caused by historical land uses
 - Results in down cut stream channels
 - Decreased groundwater levels
 - Loss of wet-meadow vegetation
 - Increased erosion and sediment load
 - Increased flood flows

Project Background

- Meadow Restoration
 - Pond-and-Plug
 - Returns stream to original floodplain
 - Increased groundwater levels
 - Return of wet-meadow vegetation
 - Increased floodplain inundation
 - Ecologically Successful

Project Background

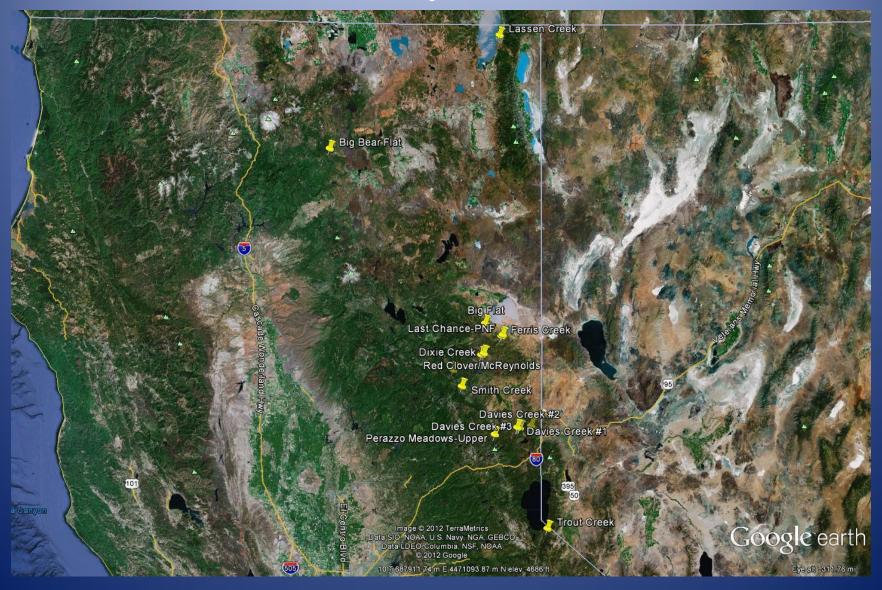
- Post-Restoration and Water Budget
 - Increased groundwater storage
 - Increased evapotranspiration
 - Modified groundwater flow paths
 - Stream flow changes
 - Decreased flood peaks
 - Increased flows post runoff
 - Late summer base flows?

Objectives

- Examine interactions between ponds and streams
 - Ponds may represent a sink for surface water flows via flood capture and evapotranspiration
- Examine groundwater flow through meadows
 - Water may flow through meadows differently and thus affect stream flow

Hypotheses

- Ponds and streams interact, with ponds possibly acting as a sink during baseflows
- Groundwater flow may fit one of three conceptual models
- Local characteristics (gradient, geology, hydraulic conductivity) could influence groundwater flow and pond/stream interactions


Conceptual Meadow Models

- Sponge
 - High permeability
 - Absorbs snowmelt and runoff
 - Releases stored water to stream post runoff
- Valve
 - Lower permeability
 - Slows discharge of groundwater to stream
- Drain
 - Variable permeability
 - Acts as recharge area for regional aquifer

Study Area

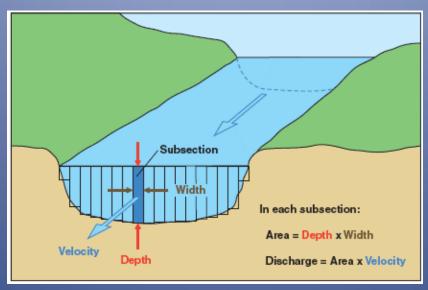
- Sierra Nevada Mountain Range
 - National Forest and private lands
 - Snowmelt driven hydrology
 - Mixed water uses
 - Agriculture
 - Ranching
 - Reservoir storage
 - Wildlife

Study Area



Study Area

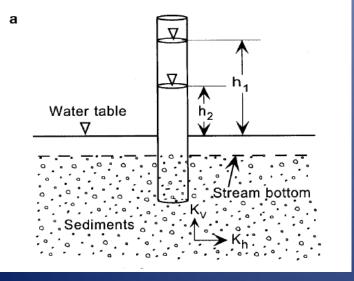
- 17 Study Sites
 - Selection Criteria
 - No surface interaction between ponds and streams (for at least 3 ponds and at low flows)

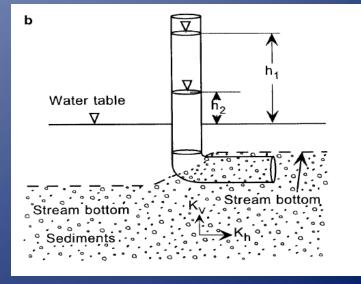

Site Name	Number of Study Ponds	Number of Water Level Loggers
Big Flat	10	5
Ferris Creek	8	5
Dixie Creek	7	2
Long Valley Creek	13	5
Merrill Valley #9	13	5
Davies Creek #2	8	3
Davies Creek #1	10	3
Perazzo Meadows-Upper	17	5
Davies Creek #3	6	2
Last Chance-PNF	19	2
Smith Creek	6	3
Red Clover/McReynolds	6	2
Rose Canyon Creek	10	5
Big Bear Flat	11	5
Trout Creek	10	1
Lassen Creek		2
Bagley Creek II	3	2

- Monitor stream and water levels through the season
 - Install water level loggers with staff gage in stream channel up and down stream
 - Install water level logger in pond(s) with staff gage
 - Survey water levels at least four times through season, in ponds and in adjacent stream channel

http://www.solinst.com/Prod/3001/3001d6.html

Measure discharge at stream level loggers




http://ga.water.usgs.gov/edu/streamflow2.html

Davies Creek #2

 Measure vertical and horizontal hydraulic conductivity in ponds using standpipe methods (Chen, 2000)

Chen (2000)

- Survey aspect and gradient
- From online resources collect
 - Geologic parent material
 - Precipitation data

- Stream and Pond Interactions
 - Compare water levels through season
 - Similar increasing/decreasing rates could indicate interaction
 - Lower pond levels than stream in late summer could indicate stream water flowing to ponds and loss through evaporation

- Groundwater Flow Model
 - Compare water levels in ponds through season
 - Downhill and pond to pond
 - Could indicate groundwater flow paths, and whether meadow fits sponge, valve, or drain conceptual model
 - Compare hydraulic conductivities
 - In combination with water level comparison, could indicate whether meadow fits conceptual model

- Evaporation
 - Estimated using methods from White (1932),
 Loheide (2008), and Hill et. al. (2007)
 - Use diurnal fluctuations in pond level loggers
 - Could indicate groundwater recharge
 - Indicate water loss from ponds into atmosphere

Chen (2006)

- Hydrograph
 - Create rating curve from discharge measuring and water level recordings
 - Compare hydrographs from upstream and downstream of project area

Synthesis

- Use discriminate analysis to compare measured values (stream/pond interactions, hydraulic conductivity) with landscape characteristics (slope, aspect, geology)
- Determine what factors (if any) influence groundwater flow and stream/pond interactions

Summary

- Further understanding of pond and stream interactions
- Examine meadow conceptual models
- Compare meadow to meadow
- Provide knowledge for practitioners and managers

Acknowledgements

- Funding
 - California DWR and National Fish and Wildlife
 Foundation through the US Forest Service
 - Sierra Nevada Conservancy
- Supporting Data
 - Feather River Coordinated Resource Management
 - StreamWise